Article | March 21, 2022

Ultrafast Lasers & Advanced Motion Control Systems Improve Performance In Material Processing

Laser material processing continuously advances the state-of-the-art in fields spanning from medical technology (e.g., laser drilling holes in tablets to provide controlled release of drug delivery) to semiconductor manufacturing (e.g., laser annealing for reduced feature sizes).  Progress stems from advances in the performance of the laser as well as the motion control and automation system directing the beam and/or moving the parts to be processed quickly and precisely to the exact location at the exact time.  Speed and timing are crucial for the laser, the positioning system, and the exact synchronization of multi-axis motion with the firing sequence of the laser.

Readers can probably instantly recall videos on order of magnitudes panning down from celestial bodies to sub-cellular microscopic levels. At the finer end of these scales, where microns and nanometers matter, PI is a world-leader. Each day in technical discussions around the globe, the words micron and nanometer are spoken thousands of times with innovative companies and world-leading research institutions.  The focus at PI isn’t just on ultraprecise, it’s also on ultrafast and equally important are terms like picosecond, femtosecond, and attosecond.

Producing components with functional structures and geometries at micron and submicron scales absent of collateral damage is guiding the next generation of laser processes; ultrafast lasers manufacturers and machine builders play a key role here. Ultrafast lasers have wide-ranging application potential in ablative (direct material removal) and non-ablative processes across a spectrum of brittle, flexible, organic, alloy, and composite materials.

access the Article!

Get unlimited access to:

Trend and Thought Leadership Articles
Case Studies & White Papers
Extensive Product Database
Members-Only Premium Content
Welcome Back! Please Log In to Continue. X

Enter your credentials below to log in. Not yet a member of Photonics Online? Subscribe today.

Subscribe to Photonics Online X

Please enter your email address and create a password to access the full content, Or log in to your account to continue.

or

Subscribe to Photonics Online