Application Note

Anamorphic Prism Pairs

Source: Edmund Optics

Most laser diodes produce elliptically-shaped beams with different divergence angles in the x and y axes because of the rectangular shape of the diode’s active region (Figure 1). This is detrimental in many applications, as elliptical beams will have a larger focused spot size than circular beams. Larger spot sizes lead to a lower irradiance (flux of radiant energy per unit area) at the point of focus, which in turn may require a higher power input to the laser. Anamorphic prism pairs are particularly useful for circularizing elliptical beams.

The geometry of laser diodes causes them to produce elliptical beams with two different divergence angles.

Figure 1: The geometry of laser diodes causes them to produce elliptical beams with two different divergence angles.

An anamorphic prism pair consists of two prisms used to reshape a laser beam.1 They are most often used to transform elliptical beams into circular profiles, but they can also produce other elliptical beam profiles in a range of sizes. The optical principle at play behind the reshaping is refraction; the light is bent in one direction, or one axis, while the other axis is kept constant (Figure 2). This compensates for the different divergences of the original beam.

access the Application Note!

Get unlimited access to:

Trend and Thought Leadership Articles
Case Studies & White Papers
Extensive Product Database
Members-Only Premium Content
Welcome Back! Please Log In to Continue. X

Enter your credentials below to log in. Not yet a member of Photonics Online? Subscribe today.

Subscribe to Photonics Online X

Please enter your email address and create a password to access the full content, Or log in to your account to continue.

or

Subscribe to Photonics Online