ABOUT FLIR

FLIR Systems, Inc. designs, develops, manufactures, markets, and distributes technologies that enhance perception and awareness. We bring innovative sensing solutions into daily life through our thermal imaging, visible-light imaging, video analytics, measurement and diagnostic, and advanced threat detection systems.

FLIR offers a diversified portfolio that serves a number of applications in government & defense, industrial, and commercial markets. Our products help first responders and military personnel protect and save lives, promote efficiency within the trades, and innovate consumer-facing technologies. FLIR strives to strengthen public safety and well-being, increase energy and time efficiency, and contribute to healthy and intelligent communities.

Our Research & Science Segment within the Industrial Technologies Division designs and manufactures high-performance thermal imaging systems used to detect and measure minute temperature differences in a wide variety of scientific, research, and product development settings. These cameras aid in understanding and decision making in a vast array of applications including R&D, life sciences, scientific research, electronics development, and military testing.

Quick Facts
Employees: Over 4,200 worldwide
Investor Resources: www.flir.com/investor/
Revenue: $1.8B (2018)
Locations: FLIR conducts business in more than 150 countries around the globe

FIXED ADVANCED-LEVEL CAMERAS

The FLIR A6780 series comprises thermal imaging cameras designed to easily measure the temperatures of rapid thermal events and fast-moving targets across a wide temperature range. With 327,680 (640 × 512) pixel resolution that achieve spatial resolutions down to 5 µm per pixel, these A6780 cameras are ideal choices for industrial, military, and manufacturing R&D applications.

The FLIR RS8500 MWIR camera is a high-performance thermal science camera combined with an infrared telescope in a single weatherproof housing for long range tracking and measurement. The imaging system is built around a high-resolution 1280 x 1024 midwave indium antimonide detector that can deliver data at up to 180 frames per second.

FLIR offers the FLIR A8580 high definition thermal camera designed with best-in-class imagery for industrial, military, and manufacturing R&D applications. The MWIR camera includes a 1.3 MP detector captures beautiful, crisp images, and a 4-position warm filter wheel that permits the measurement of temperatures up to 3,000°C.

FLIR offers the FLIR A8580 SLS high definition thermal camera designed with best-in-class imagery for industrial, military, and manufacturing R&D applications. The LWIR camera includes a 1.3 MP strained layer superlattice (SLS) detector for capturing sharp images and a 4-position warm filter wheel that permits the measurement of temperatures up to 3,000°C.

The FLIR X6800sc is a fast, highly sensitive MWIR camera designed for scientists, researchers, and engineers. With advanced triggering and on-camera RAM/SSD recording, this camera offers the functionality to stop motion on high-speed events both in the lab and at the test range. The X6800sc has a cooled FLIR indium antimonide (InSb) detector and captures full 640 x 512 images at 502 frames per second, or up to 29,134 Hz with windowing.

FLIR’s X6900sc series cameras are the world’s fastest full frame MWIR and LWIR 640 x 512 resolution thermal cameras for use in high-speed R&D and science applications. The infrared cameras are designed to produce thermal data at up to 1,004 frames per second at full resolution, and can be sub-windowed for even faster rates.   With multiple simultaneous digital data outputs over GigE, CameraLink and CoaxPress in addition to the ability of burst recording to on-camera RAM for up to 26 seconds,  there is never a worry of missing critical frames of data.

FLIR offers the X8500sc as its new high-sensitivity, high-speed MWIR camera and LWIR camera for science and R&D applications. The X8500sc MWIR features a FLIR indium antimonide (InSb) detector, while the X8500sc SLS LWIR features a strained layer superlattice (SLS) detector. With 1280 x 1024 resolution, fast frame rates, and RAM/SSD recording, this camera allows for full imaging of the scene and stop motion on high speed events both in the lab or on the test range.

FIXED ENTRY-LEVEL CAMERAS

FLIR offers the A6260 imaging camera for SWIR science and R&D applications. Pairing high speed performance with fully customizable features, this high-resolution detector offers improved sensitivity and linearity across the full dynamic range, making it ideal for radiometry and temperature calibrated applications.

FLIR offers the A6750 LWIR thermal imaging camera with a cooled SLS detector designed for high speed image acquisition up to 4.1 kHz with windowing. It captures all pixels simultaneously in under 190 μs for room temperature scenes, which is particularly important when monitoring fast moving objects where an uncooled thermal imaging camera would suffer from image blur.

FLIR offers the A6750 MWIR thermal imaging camera with a cooled InSb detector designed for high speed image acquisition up to 4.1 kHz. Synchronization with other instruments and events enables the capture of minute details, and available custom cold filtering options allow specific spectral detection and measurement. It is ideal for imaging through glass, measuring temperature of thin film plastics, laser profiling and detection, and optical gas imaging.

FLIR offers the A6700 MWIR thermal imaging camera with a cooled InSb detector designed for high speed image acquisition up to 480 Hz. Synchronization with other instruments and events enables the capture of minute details, and available custom cold filtering options allow specific spectral detection and measurement. It is ideal for imaging through glass, measuring temperature of thin film plastics, laser profiling and detection, and optical gas imaging.

The FLIR A400 and A700 Science kits are designed to offer a streamlined solution for accurate temperature measurements. Each standard kit includes a FLIR A400 or A700 image streaming camera, a 24˚ lens with automatic/remote and manual focusing, as well as FLIR Macro Mode.

FLIR's A325sc infrared cameras transition seamlessly from the research lab to the production line with multiple optic options, available data recording and analysis software and simple Gigabit Ethernet connectivity. With a 320 x 240 pixel resolution and spectral range of 7.5 µm -13.0 µm the A325sc Series is an affordable and flexible option for real-time thermal analysis in applications including predictive and preventive maintenance, research and development and manufacturing process control.

FLIR's A655sc infrared cameras offer ultra-sharp 640 x 480 image resolution, high-speed windowing for an increased output frame rate up to 200 Hz, Gigabit Ethernet and USB connectivity, filtering, and the best sensitivity in an uncooled sensor. 

HAND HELD CAMERAS

The FLIR GF335 is a mobile high-sensitivity, low noise, cooled thermal camera designed for detecting faint heat signatures in a range of applications, including use on test ranges, non-destructive testing, research, and science applications. This broadband camera features a cooled 3 – 5 µm InSb detector producing razor sharp images at 76,800 (320 x 240) pixels.

FLIR offers the new T1030sc Long-Wave Infrared Camera designed to capture images with 1024 x 768 pixels at 30 frames per second (fps). The camera provides high thermal sensitivity, fast raw data streaming, and a high speed interface (HSI) connection for streaming lossless HD radiometric imagery at 120 Hz or up to 480 Hz with windowing.

The T530 and T540 are a part of FLIR’s T-series of compact infrared (IR) cameras for scientific and R&D applications. These models feature greater sensitivity, better accuracy, and a higher temperature range than other cameras in the series. With an improved ergonomic design, rapid-response user interface, and the exacting detail of FLIR’s unique Macro Mode, T500-Series cameras increase efficiency, reduce test times, and provide new insights into the target’s thermal behavior.

BENCH TOP TEST KITS

The FLIR A35sc and A65sc Benchtop Test Kits are the perfect choice for engineering and science labs where size constraints are critical. Heat patterns and extract temperature values are easily detected from live or recorded imagery, and a variety of pixel resolutions are available as well as time vs. temperature plotting.

FLIR offers the new ETS320 affordable, non-contact thermal measurement system designed to collect accurate, reliable data in seconds and analyze it quickly for electronics testing and scientific research. The system pairs a high-sensitivity infrared camera with an integrated stand for hands-free measurements of printed circuit boards and other small electronics.

FLIR SOFTWARE

FLIR Research Studio is powerful, simple-to-use software for analyzing how thermal imagery changes over time. Designed to work the way you work, the software makes thermal analysis faster, more convenient, and enables better teamwork. Whether a Windows, MacOS, or Linux user, Research Studio provides customers with an easy way to quickly and efficiently display, record, and analyze accurate thermal data on their machine in any of 22 languages. 

FEATURED VIDEOS

  • See The Heat: Troubleshooting PCB And Electronic Product Design With Thermal Imaging

    In this webinar, FLIR's Jerry Beeney compares infrared imaging with the more traditional temperature measurement devices, utilizing real-world IR images and examples to demonstrate how infrared thermography can more easily identify hot spots and improve thermal management.

  • Tips For Selecting An Infrared Camera For Research And Development Applications

    There are arguably countless types of infrared cameras on the market that can be used in research science applications. So how do you go about choosing the best one for you? Jerry Beeney of FLIR Research & Science discusses some important considerations in the decision process for choosing a camera including temperature, speed and distance requirements.

  • FLIR Introduces The New SWIR Camera With InGaAs Detector

    Jerry Beeney of FLIR Research & Science introduces the new A6200 SWIR camera with a built in InGaAs Detector for many applications including laser beam profiling, industrial, and other unique uses like imaging through paint and printed currencies.

  • Overcoming The Challenges Of Measuring Temperature At High Speeds With FLIR X-Series Cameras

    Measuring the temperature of fast moving objects can be very challenging since traditional temperature measurement devices are often too slow or simply impractical.  In this brief 20-30 minute webinar, FLIR’s Scientific Segment Engineer, Taimen Taylor, will discuss how recent developments in high speed thermal camera technology allow engineers and researchers the ability to easily visualize and accurately measure temperatures on extremely fast moving targets.  Taimen will use real-world images from a variety of high speed thermal applications to showcase how new camera features allow users to record, access and analyze data quickly and easily.

  • Advantages Of LWIR SLS Thermal Cameras

    The integration of Type II Strained Layer Superlattice (SLS) detectors into commercially available thermal cameras in recent years has allowed researchers and scientists to solve several of the most difficult temperature measurement challenges. In this webinar FLIR will discuss how infrared cameras with cooled LWIR SLS detectors deliver significant improvements in speed, temperature range, uniformity, and stability while providing examples of their performance benefits when used is various high speed thermal measurement applications.

  • High-Speed Thermal Recording At Its Very Best

    In this video, FLIR introduces the Portable High-Speed Data Recorder (pHSDR) and demonstrates how it can resolve some of the traditional performance limitations that arise from recording straight to a computer hard drive.

  • Product Video: HD Line Of Science-Grade Cameras

    On day one of Photonics West, Ross Overstreet with FLIR showed us three different science-grade HD cameras they were exhibiting at the show. First, we saw the X8500sc 1280x1024 high-speed MWIR camera, ideal for demanding military test range imaging applications like target scoring  and target signature.

CONTACT INFORMATION

FLIR Systems, Inc - Research & Science

9 Townsend West

Nashua, NH 03063

UNITED STATES

Phone: 800-905-9557

Contact: Ross Overstreet

FEATURED DOWNLOADS

  • Utilizing High-Speed 3-D Thermography

    A new camera system developed by researchers at the Frauhofer IOF in Jena is designed for the 3-D detection of objects with two high-speed, high-resolution, monochrome cameras and a GOBO projector. 

  • The Complete Guidebook On Thermal Screening For Elevated Skin Temperature

    Infrared thermography, especially with the use of an infrared camera, can detect elevated skin temperatures, which may indicate the presence of a fever. This method offers a vital tool in screening travelers, hospital patients and visitors, warehouse workers, customers, and more.

  • Validating Thermal Protection Before A Space-Shot Launch

    Neil Tewksbury and his team at the University of Southern California Rocket Propulsion Lab want to blast a rocket into space. As part of an unofficial space race among international universities, Tewksbury and his team don’t just want to be the first team to successfully launch; they want to reach an altitude of 100 km (330,000 ft) above sea level with a rocket made up completely of components that they manufacture themselves. They only get to build one or two rockets every year, so testing components on the ground is essential to building viable rockets.

  • FLIR Thermal Imaging Cameras Monitor Stress Levels Of Helicopter Pilots

    Flying a helicopter is a stressful activity. Pilots have a high workload and are constantly under pressure. Italian helicopter manufacturer Leonardo wanted a reliable and objective way to measure the stress that pilots experience, so they would be able to design more functional cockpits and train helicopter pilots more efficiently. The company brought in high-end thermal cameras from FLIR to monitor pilots during flight simulations and to see which procedures and operations cause stress.

  • FLIR Cameras Reveal Thermal Characteristics of Microelectronic Devices

    At the University of Texas at Arlington, the team of Dr. Ankur Jain, who heads the Microscale Thermophysics Laboratory, studies a range of topics related to microscale thermal transport.

  • See The Heat: Troubleshooting PCB And Electronic Product Design With Thermal Imaging

    In this webinar, FLIR's Jerry Beeney compares infrared imaging with the more traditional temperature measurement devices, utilizing real-world IR images and examples to demonstrate how infrared thermography can more easily identify hot spots and improve thermal management.

  • Improving Additive Manufacturing With The Help Of Infrared

    Additive manufacturing technologies create components directly from a computer model, adding material only where needed. This app note discusses how infrared cameras can help manufacturers find systematic problems and determine the changes needed to maintain product quality.

NEWS

  • FLIR Releases Starter Thermal Imaging Dataset for Machine Learning Advanced Driver Assistance Development

    FLIR Systems, Inc. today announced the availability of its open-source machine learning thermal dataset for Advanced Driver Assistance Systems (ADAS) and self-driving vehicle researchers, developers, and auto manufacturers, featuring a compilation of more than 10,000 annotated thermal images of day and nighttime scenarios.

  • FLIR Acquires Nano-Drone Maker Prox Dynamics

    Today FLIR Systems Inc. announced the acquisition of Prox Dynamics, a Norway-based manufacturer of revolutionarily small, light, nano-class unmanned aerial systems (UAS) featuring their Black Hornet aerial sensor for military and para-military intelligence, surveillance, and reconnaissance gathering applications, for approximately $134 million in cash.

  • FLIR Releases New Software For Research And Science Applications

    FLIR Systems has recently announced a new 4.2 version of its ReasearchIR thermal imaging software. The new software is a powerful tool for viewing, acquiring, analyzing, and sharing thermal data captured with FLIR’s scientific and R&D cameras. It also allows users to access their MATLAB scripts directly in ResearchIR for specially-tailored image analysis and processing tasks.

  • FLIR Introduces UltraMax for T-Series Research and Science Cameras

    FLIR Systems recently introduced UltraMaxTM technology for its broad range of Tsc-Series handheld research and science cameras. The new UltraMaxTM technology will enable researchers to improve resolution of native thermal images, giving them more clarity and a higher level of temperature measurement accuracy. Using UltraMax, cameras will be able to make thermal images captured have up to four times as many pixels.

  • FLIR Systems Announces New FLIR Vue™ Thermal Cameras for sUAS

    FLIR Systems, Inc. recently announced the release of its new product; the FLIR Vue. The FLIR Vue is a compact thermal camera specifically designed for use on commercial sUAS. This new thermal camera provides a simple power-in/video-out interface over the same mini-USB interface many sUAS operators already use with the most popular action cameras. FLIR Vue is a simple plug-and-play thermal imaging solution for sUAS available and is ready to use with the most popular video transmitters and OSDs

  • FLIR Releases ResearchIR 4.2 Software For Research And Science Applications

    FLIR Systems announced the release of version 4.2 of its ResearchIR software. ResearchIR 4.2 provides researchers and scientists a powerful tool for viewing, acquiring, analyzing, and sharing the thermal data captured with FLIR’s Scientific and R&D cameras.

  • Continuous Leak Detection At Vital Installations

    The G300a thermal imaging camera from FLIR Systems lets you can monitor vital gas pipelines or installations 24/7. Installing a FLIR G300a will immediately enable you to see if a dangerous and costly gas leak appears.